Beach Litter Monitoring in the Arctic using drone and satellite imagery

Marc Schnurawa¹, Anna Kersten¹, Guruprasad Hegde¹, Monika Dorsch¹, Georg Nehls¹
Marcus Schulz², Claus-Dieter Dürselen²,
Rita Fabris³, Heike Herata³

BioConsult SH, Husum, Germany;
 AquaEcology GmbH & Co. KG, Oldenburg, Germany;
 Umweltbundesamt, Dessau, Germany

FKZ 3719 18 201 0 - Environmental Protection in the Arctic — support of German activities in the Arctic Council in terms of a pilot study on monitoring plastic litter on arctic coastlines applying remote sensing techniques

Monitoring of plastic litter

Conventional monitoring:

Detection of small objects
Categorisation
Long time series
Beach cleaning

Limitation:

Different protocols
Accessibility of the beaches
Spatial coverage
Time consuming

Remote Sensing

Remote sensing for beach litter in the Arctic

Conventional monitoring + remote sensing

Satellite

CC BY-SA 2.0 FR

Aircraft

HiDef BioConsult SH

Drones

WingtraOne: VTOL **Monitoring Drone**

Requirements:

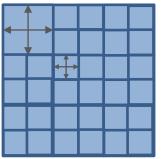
Area coverage

Time saving

Comparability

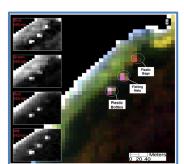
Combination of multiple methods:

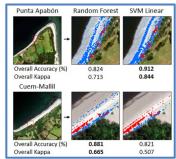
High spatial resolution of the UAV sensor Area coverage by satellite images (WV3) Comparability through automatization



Remote sensing for beach litter

Drones





Manuell Screening
Detection/ Classification
Automatic detection

Topouzelis et al. (2019) Acuña-Ruz et al. (2018)

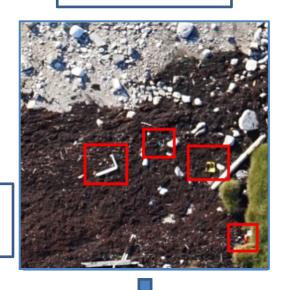
Detection
Sub-Pixel Recognition

Remote sensing for beach litter - drones

Time saving / area coverage

High area coverage : 50 ha/ h

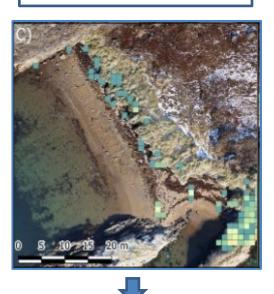
Flight altitude: 70 m ← GSD: 1.4 cm



Time saving: Up to 10x Fieldwork << Office

Detection/ Classification

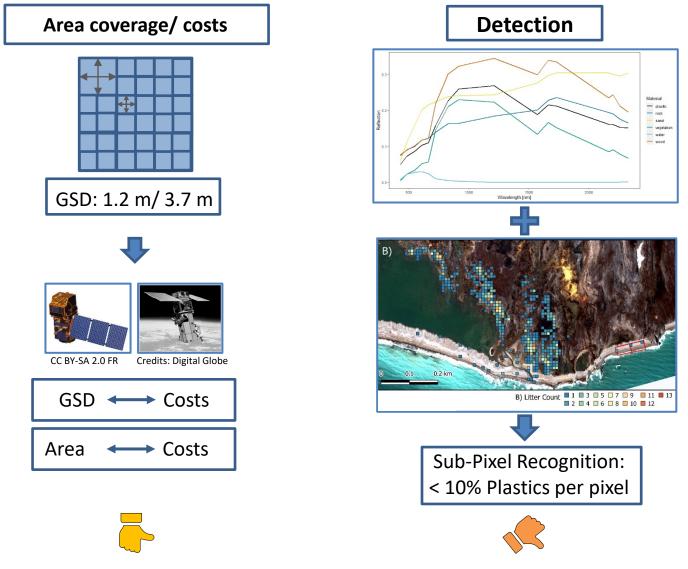
Manual screening



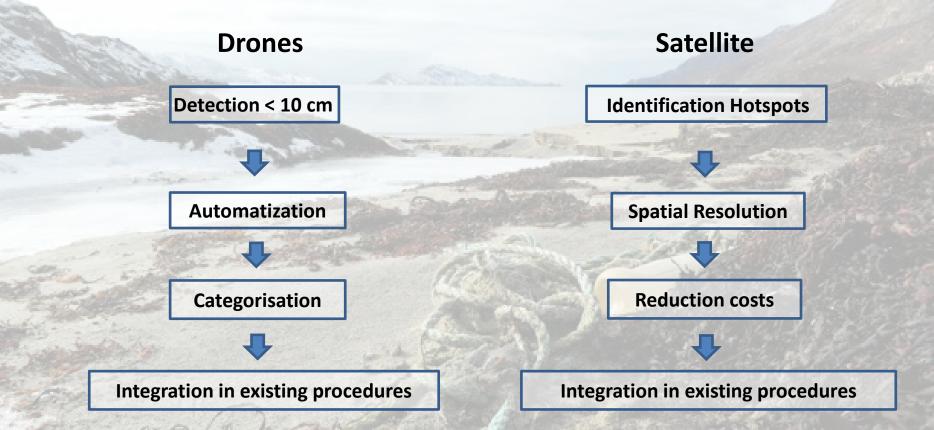
Size/shape/colour + background
Objects >10 cm: mainly
Objects <10 cm: partly

Transferability

Automatic detection



False Positives
Beach parameters



Remote sensing for beach litter - satellites

Outlook - Remote sensing for beach litter

Literature

Acuña-Ruz, Tomás, et al. "Anthropogenic marine debris over beaches: Spectral characterization for remote sensing applications." *Remote Sensing of Environment* 217 (2018): 309-322.

Topouzelis, K., Papakonstantinou, A., & Garaba, S. P. (2019). Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018). *International Journal of Applied Earth Observation and Geoinformation*, 79, 175-183.

