A marine plastic cloud Global oceanic plastic pollution mass balance in relation to the Arctic

Arctic Plastic Symposium THEME 6: Tackling plastic pollution: international collaboration, policies, best practices and novel developments from around the world 23/11/23

> Dr. Thomas Maes (GRID-Arendal) Dr. Peter Harris (GRID-Arendal) Dr Karen Raubenheimer (Wollongong University) Dr J.P. Walsh (University of Rhode Island)

WHAT GOES IN MUST COME OUT

Where is all the plastic?

A Centre collaborating with UNEP

Abracadabra? THE MAGIC FORMULA

In 1756, the Russian scientist Mikhail Lomonosov formulated <u>the law of mass</u> <u>conservation</u>:

"In an isolated system, matter is neither created nor destroyed!"

LAND

A UNEP Partner

A UNEP Partner

Major sources and sinks of microplastics and marine litter

a Sea G·R·i·D

Harris et al., 2021 - Taking a mass-balance approach to assess marine plastics in the South China Sea $^{\mid}$

Estimated emissions of plastic waste (million metric tons per year)	Solution Source-to-sea aspect	Projected emissions of plastic waste (million metric tons per year) under certain conditions	Approach used
19-23	Entered aquatic ecosystems in 2016	53 by 2030	Integrating expected population growth, annual waste generation per capita, the proportion of plastic in waste; incorporating an increase in plastic materials associated with predicted production increases, and the proportion of inadequately managed waste by country (Borelle et al. 2020)
9-14	Entered the aquatic systems in 2016	23-37 by 2040 (equivalent to 50 kg of plastic per metre of coastline worldwide)	Modelled stocks and flows of municipal solid waste and four sources of microplastics through the global plastic system, using five scenarios (2016–2040) and assuming no effective action is taken (Lau <i>et al.</i> 2020
0.8-2.7	Entered the oceans from global riverine systems in 2015		Based on >1,000 rivers, calibrated using field observations (Meijer <i>et al.</i> 2021)

Rolling in the Deep

- Literature review
 - (i) the sedimentary environment
 - 1) slope
 - 2) submarine canyon
 - 3) submarine fan/continental rise
 - 4) abyssal plain
 - 5) deep trench, trough or other hadal areas
 - 6) other deep ocean areas
 - (ii) the methods used to measure microplastic
 - (iii) the shape of microplastic particles (fibres, pellets, fragments, beads, etc.)
 - (iv) the number of microplastic particles kg⁻¹ of sediment.
 - the mass of microplastic kg⁻¹ of sediment
 - sediment accumulation rates
- Microplastic mass concentration:
 - assumed microplastic particle size of a 100 μm diameter sphere
 - microplastic density of 1.099 g/cm³
 - sediment bulk density of 0.6 g/cm³.
 - sediment depth of 9 cm

Deep-Sea Plastic

Data were extracted from 23 separate research papers which covered 34 geographic locations and provided a total of 280 observations of deep-sea sediment microplastic concentration

© European Marine Board

Walrus

14 7

Bowhead whale

Benthos

Dead organisms

Hayward A and Grigor J (2020)

Jeilynsh

Conclusions

A Marine Plastic Cloud

The ocean water column behaves as a transitory, temporary storage area for plastic

Want to find out more?

- Harris et al., 2023 Global mass balance assessment of oceanic plastic pollution -Continental Shelf Research
- Harris et al., 2021 Taking a mass-balance approach to assess marine plastics in the South China Sea – Marine Pollution Bulletin

Thank you for your attention!

End

thomas.maes@grida.no

Cher