

Microplastic in Gravity-driven Membrane Filtration for Cold Climate Decentralized Wastewater Treatment

Selina Hube

FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING

Microplastic in Conventional Biological Process

Beads

Fibers

Fragments

- Sedimentation/ floatation: 41-99% removal
- Activated sludge process: 17-98% removal
- → sludge sorption and secondary sedimentation
 High removal fluctuations due to variable microplastic characteristics:
- Shape
- Material
- Agglomeration:

organics

other wastewater components

Conventional Biological Process

- Preferably warmer temperatures and continuous flow
- Long start-up and adaption time with varying feed
- High energy consumption for aeration
- Sludge requires post-treatment

Decentralized wastewater treatment:

Modularity, stable performance, simple operation, adaptability

Decentralized Wastewater Treatment

• Reported decentralized treatment systems

Septic tanks

Constructed wetlands

Biological systems Membrane bioreactors etc.

Often fluctuating effluent quality, complicated systems

Emerging pollutants in decentralized systems well studied
 → except microplastics

Gravity-driven Membrane Filtration (GDM)

Why GDM?

- Simple in design and maintenance, high modularity
- Able to handle fluctuating inflow and low temperature
- Suitable for decentralized application

Microplastic accumulation?

Setup

Results: Cake Layer

- With small MP (0.1 g/L): cake density comparable to control
- With large MP: lower cake density, but more mass, low divalent ions
 - \rightarrow Large spaces between MP create pores

L 0.1 g/L

- With small MP (0.2 g/L): higher porosity, higher mass, lower divalent ion density
 S 0.2 g/L
 → Weaker bridging between organics
- Large & small MP: porous cake layer with $s 0.1 \text{ g/L} + low divalent ion concentration}$

Results: Metal Accumulation

•

	Foulants (µg/m²)					
		Control	S 0.1 g/L	L 0.1 g/L	S 0.2 g/L	S 0.1 g/L + L 0.1 g/L
	Ti	374.42	1212.18	1549.54	1248.73	2259.01
	V	405.57	275.20	483.72	541.94	789.81
With MP: higher metal accumulation	Cr	92.63	100.28	234.94	193.10	280.67
Metal content similar to foulant mass	Mn	4978.04	2442.94	6281.94	5951.71	13056.44
	Co	315.98	112.13	546.99	281.60	854.09
→ Increased MP offered more retention opportunities	Ni	177.34	149.25	307.55	378.48	615.67
	As	24.85	17.25	23.83	47.76	58.91
No clear frend regarding MP sizes	Rb	13.23	11.67	18.97	27.47	34.82
→ competition with divalent ions?	Sr	1666.35	1128.70	1297.87	2756.01	2756.34
	Мо	74.57	82.22	46.68	112.09	79.52
	Cd	4.82	10.41	13.95	25.63	25.26
	Sn	10.68	12.83	17.25	24.16	44.41
	Sb	8.67	15.21	13.28	19.59	19.36
	Ba	938.19	721.97	1016.79	1485.20	2627.00
	W	5.81	8.93	21.09	16.18	43.52
	Hg	0.64	0.80	1.14	1.57	2.14
	Pb	110.63	5173.98	5068.77	15900.31	15198.31

Conclusion & Acknowledgments

- Varying characteristics of MPs make their removal challenging
- MP in decentralized systems little studied
- MP increases resistance in GDM
- MP leads to metal accumulation in cake layer

Bing Wu

Michael Burkhardt

Jóhann Gunnarson Robin

UMV502M students

UNIVERSITY OF ICELAND Grants and Funds

THEFT

