EDUCATING OUR FUTURE ARCTIC PLASTICS RESEARCHERS

MATTHEW JOHNSON
VICE PRESIDENT, EDUCATION

INT'L SYMPOSIUM ON PLASTICS IN THE ARCTIC AND SUBARCTIC

IMPORTANCE OF TEACHING DISRUPTIVE TECHNOLOGIES

Why is it so important to integrate disruptive technologies (distech) into the education system?

- STEM education <u>fosters</u> disruptive thinking and innovation
- Enhances active participation and learning
- Distect is well suited for shifting to experiential learning

SEAR PROGRAM

VOLATUS AEROSPACE

Students learn to utilize drone and machine learning technologies while conducting real-world, hands-on academic research activities that could result in new, more efficient technologies or processes.

EDUCATING OUR FUTURE ARCTIC PLASTICS RESEARCHERS

THE LITTER PROJECT

- Collect drone-based multispectral and RGB data of beaches, community spaces, riparian zones etc.
- Teach students to train machine learning algorithms to identify foreign objects / garbage on beaches or community spaces.
- Geotag garbage with GPS co-ordinates for ground personnel or robotic collection.

PARTNERSHIP OPPORTUNITIES

- Schools / School Divisions
- Municipal / Provincial Governments
- Academia (University Research)
 - ✓ Drone Pilots to assist with data collection
 - ✓ Drone Pilots to assist with training of students
 - ✓ Research / data analysis activities
- Commercial (Crop Researcher Organizations, Sponsors, etc.)
- Non-profit organizations

PROGRAM WORKFLOW

- 1. Regional academic partners are established
 - University partners provide regional support for program ming and connections with regional school districts that will partake in SEAR
 - Universities benefit by reinforcing pipeline of students to the university to expand on experiences in the SEAR Program
 - Biology / Marine / Environmental Science
 - Forestry / Agriculture / Ecology
 - UAS studies
 - Survey / Geosciences
- 2. Establish participating regional schools. 25 students per "iteration"
- 3. Deliver's content (sometimes with assistance from universities)
- 4. Students write federal drone pilot certification exams

PROGRAM WORKFLOW

- -4 Days, 25 Students, 24 hours of instruction
- Module 1: Drones, Remote Sensors, & Science (Day 1 AM)
- Module 2: Data Processing & Spectral Analysis (Day 1PM)
- Module 3: Machine Learning (Day 2 AM)
- > Module 4: Operations Training (Day 2 PM)
- Module 5: Data Collection Field Day (Day 3 All Day)
- > Module 6: Feedback / Federal Exam (Day 4 All Day)

